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Electroencephalographic or EEG signals collected on the human scalp are
sustained fluctuations of electrical potential that reflect corresponding variations in
the upper layers of the brain cortex below the scalp surface. The signal structure is
that of a stochastic time series with almost stationary epochs of various lengths
separated by sharper transitions or disruptions. Amplitudes are small (up to a few
tens of microvolts) and spectral decomposition reveals that very little power remains
at frequencies above 30 Hz. Most of it is contained at very low frequencies (< 1 Hz)
and within the narrow bands of specific rhythms (and particularly of the 8-13 Hz
alpha rhythm) that appear and disappear somewhat randomly in time. Signals
collected on two or more electrodes exhibit changing levels of correlation, due either
to physical proximity (that is, sharing of immediate influences from the cortical
surface) or to actual coordination between different cortical sites, thus reflecting
shared neuron activity within the brain itself. Spectral content and correlation have
been related to various emotional and behavioral states.

Imbedded in this sustained *‘spontaneous’ or *‘ongoing” electrical activity, short,
distinctive (0.5-2 sec) waveforms can be found that are evoked, for instance, when a
brief sensory message (stimulus) such as a brief illumination of the visual field or a
tap on the forearm is received by the subject. These “‘evoked responses” are small
(a few microvolts) and somewhat buried in the ongoing activity. The characteristics
of the stimulus determine the evoked potential waveform together with the stimulus
“environment,” such as the level of attention of the subject, the *‘expectation set,”
and the meaning of the stimulus in the context of the experiment.

Can these observable electrical brain signals be put to work as carriers of informa-
tion in man-computer communication or for the purpose of controlling such external
apparatus as prosthetic devices or spaceships? Even on the sole basis of the present
states of the art of computer science and neurophysiology, one may suggest that
such a feat is potentially around the corner.

The Brain Computer Interface project, described later in this chapter, was meant
to be a first attempt to evaluate the feasibility and practicality of utilizing the brain
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signals in a man-computer dialogue while at the same time developing a novel tool
for the study of the neurophysiological phenomena that govern the production and
the control of observable neuroelectric events.

The long-range implications of systems of that type can only be speculated upon
at present. To provide a direct link between the inductive mental processes used in
solving problems and the symbol-manipulating, deductive capabilities of the com-
puter, is, in a sense, the ultimate goal in man-machine communication. It would
indeed elevate the computer to a genuine prosthetic extension of the brain. To
achieve that goal with adequate generality is a formidable task that will require
considerable advances in neurophysiology (to identify appropriate correlates of
mental states and decisions in external signals), in signal analysis techniques (to
sort and identify the relevant information carriers from the garbled and diffuse
mixture that reaches the scalp), and in computer science (to develop appropriate
software within the constraints introduced by the nature of brain messages). While
such major advances are still in the future, some progress in that direction is attain-
able with the present state of the art, which can open the door to a broad range of
applications related to brain function and malfunction. By identifying those brain
states that would optimize perception or learning, we can considerably increase the
efficiency of computer-assisted learning programs. Studies of perception, investi-
gations of dyslexia and epilepsy, studies of the effect of hallucinogenic drugs, and the
development of early diagnosis of brain tumors that affect perception, are possible
clinical applications, as would be the extension of such systems to the control of
prosthetic devices.

NEUROPHYSIOLOGICAL CONSIDERATIONS

In this section, the current theories for the phenomena responsible for generating
EEG signals are briefly reviewed together with related work in computer processing
and interpretation of these signals. The relatively recent development of operant
conditioning of neural events is singled out as particularly relevant to our main
topic.

NEUROPHYSIOLOGICAL ORIGINS OF EEG SIGNALS

In 1929, Berger (1) demonstrated the possibility of recording brain waves from
the intact skull. Since then, an enormous amount of brain wave data covering a
variety of conditions has been accumulated by neurophysiologists, and in recent
years, computers have been used extensively for analysis.

Scalp-recorded brain waves show a great deal of variability, reflecting the enormous
number of influencing parameters. Overall characteristics of the wavetrains can be
somewhat predicted in relation to the electrode site, the mental state of the subject,
and the presence and type of sensory stimulation. Some of those characteristics are
readily identified by eye. Well-known examples are recognition of alpha activity and
the phenomenon of alpha blocking, sleep and barbiturate spindles, and the 3/sec
spike and wave complex of petit mal epilepsy. More subtle information in the EEG
activity, however, requires computer analysis.
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The main source of scalp potentials is the electrical activity of the cerebral cortex,
which constitutes the outside surface of the brain below the scalp. The cerebral
cortex is a thin layer of gray matter containing nerve cells (neurons). Some of them
(the pyramidal cells) are characterized by the so-called apical dendrites, which are
long membranous tubes extending toward the surface where they branch out
profusely and extend laterally for some distance. The result is a thin surface of
“white matter” where a densely interwoven mesh of fine dendritic processes belonging
to adjacent apical dendrites interconnect. Dendrites are electrolytic connectors that
propagate electrical fields to the neuron body, where they eventually trigger the
nerve impulse by “depolarizing” the nerve membrane. The impulse then propagates
along another type of membranous connector, the axon.

The surface potentials observed are generated mainly at the apical dendrites and
at the bodies (soma) of pyramidal cells. They correspond with alternate polarizations
and depolarizations that occur somewhat in synchrony inside the cells below.
(These potential changes are called postsynaptic as they result from the action of
interneuron contacts or synapses.) Currents flowing vertically in the extracellular
spaces are also thought to act as a feedback link between deep cells and dendrites.
A positive variation recorded at the surface would correspond to a region of depo-
larization (greater excitability) in deeper regions and vice versa. It is important to
note that postsynaptic potentials can be produced independently of any nerve
impulse on the part of the neurons located in the vicinity of the electrode. Indeed,
the exact correlation between neuronal firing and EEG waves is still controversial
(Fox 2, Adey 3, von Euler et al 4, Dunlop et al 5, Widen & Marsan 6, Li 7, Gerstein
& Kiang 8, Adey 9, and Buchwald et al 10). The waves occur even when all the cells
concerned are prevented from firing altogether (Marshall et al 11, Li & Jasper 12).

On the other hand, correspondence between individual waves in the EEG signal
and the postsynaptic potentials recorded intracellularly in adjacent neurons has
been abundantly established (e.g., Purpura 13, Morrell 14, and Landau 15).

Due to the large concentration of dendrites at the surface, the potentials tend to be
relatively large, but to account for their observed amplitudes, one must still assume
that large numbers of underlying neurons are acting in synchrony, undergoing
relatively slow fluctuations (compared with the time constant of a single neuron), in
order to account for the long periods (30-500 msec).

This “‘spontaneous’ or “‘ongoing” EEG activity (also called slow potentials, by
contrast with neuronal spikes) is somewhat rhythmic in nature. The analysis of these
rhythms has retained much of the early attention paid to brain waves in general.
The cortical tissue itself has a tendency to oscillate rhythmically, in absence of any
input. Cutting out small “islands’’ of tissue reduces or cancels spontaneous activity,
but rhythmic ringing is still obtained in response to electrical impulses. The main-
tained oscillations that are observed in the intact brain are believed to reflect a
“pacemaker” function probably mediated by the thalamus. It is increasingly
evident (e.g., Morrell 16) that rhythmic activities cannot by themselves convey fine
information and that their function resembles that of a carrier. The general picture is
that idlenervous tissue will exhibit spontaneousoscillation or rhythm while activity or
commitment of the same tissue to an active function will be denoted by desynchronized
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random-like oscillations. The presence or absence of certain rhythms in a given
EEG recording, however, will reflect gross differences in brain states such as sleep or
wakefulness. There is evidence that these rhythms, and especially the (approximately)
10-cps alpha rhythm, reflect a scanning and recycling device controlling incoming
sensory information (Pitts & McCulloch 17). Morrell (18) writes: ““Changes in
EEG frequency relate more to the balance between cellular synchrony and desyn-
chrony than to the specific information content of a signal. If recorded with adequate
resolution, they may indicate where the action is, but not what the action is all about.”
By contrast with the widespread character of oscillations, waveshapes are localized
and correspond well with underlying postsynaptic potentials. Thus, beyond gross
differentiation of brain states, it seems that information coding in the EEG wave
should be sought in the specific waveforms generated in time. Locality and specificity
also characterize the “‘evoked potential” discussed below.

A light flash, brief sound, or light touch of the skin generates in the corresponding
sensory cortex (visual, auditory, or somesthetic) a localized electrical response
betrayed on the cortical surface by a characteristic aperiodic waveform somewhat
buried in the ongoing background activity and covering roughly one half a second.
In general, repeated stimuli and averaging of the waveforms have been used to
reveal the “‘evoked” response. When recorded directly on the cortical surface, these
responses are made of either a positive or a positive-negative waveform of varying
complexity. Again, the surface wave reflects the synchronous contribution of
postsynaptic potentials in a large number of neurons in the vicinity of the electrode.
The positive part of the response is attributed to the activity of the lower layers of the
cortex (Li, Cullen & Jasper 19, von Euler, Green & Ricci 20, and Morrell 21), while
the negative part is believed to represent a depolarization of the upper apical
dendrites (von Euler, Green & Ricci 22).

The cortical neurons are distributed in layers, each layer in a given area presum-
ably having a particular integrative function. In a direction perpendicular to the
cortical surface, cells above one another seem to subserve various subfunctions for a
given sensory modality, while in a lateral direction, the functional properties of the
cells exhibit sharp transitions. It has been advanced that the cortex offers a columnar
organization of function although anatomists have been unable to this day to uncover
a vertical structure in interneuronal connections that could be responsible for the
columnar organization. At any rate, some experimental evidence exists for it in the
visual and the somatosensory areas (Hubel & Wiesel 23) and to a lesser extent in the
auditory cortex (Gerstein & Kiang 24). Function and modality vary with the cortical
position. For example, at certain points of the visual cortex of the cat, single cells
respond specifically to a line stimulus having given orientations on the retina.
Functional specificity in relation to cortical sites is also reflected in the ongoing
EEG: sensory stimuli of a given modality will desynchronize localized areas of the
cortical surface. Thus, because various feature-extracting functions are mapped
on the surface of the cortex, each different stimulus with its specific set of features
will evoke distinguishable electrical “‘signatures” on the cortical surface and thus
more diffusely on the scalp beyond. For instance, recording the scalp response to
the brief flashing of a figure made of vertical lines will yield a waveform markedly
different from that obtained from a set of circles. In fact, the presence in the evoked
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waveforms of clear correlates of the modalities of sensory stimulation has been
abundantly demonstrated. Of particular interest are studies dealing with visual
stimuli (White & Eason 25, Harter & White 26, 27, Clynes & Cohn 28, and Spehlmann
29). The evoked electrical signature on the cortex does however include more than a
mirror conversion of the stimulus content. In fact, only the early part of the response
appears to be so related while the “‘late’” components (100 msec and beyond) appear
to relate to more complex integrations of the stimulus such as its perception and
meaning.

COMPUTER PROCESSING AND INTERPRETATION OF EEG DaATA

The traditional strategies in utilizing the computer to analyze EEG data reflect
the basic distinction between continuous ‘‘ongoing” activity and the short, time-
locked disturbances of the EEG that constitute evoked responses to brief stimuli.
To the former, the framework of brain rhythm and concepts such as spectral densities
have been frequently applied. The latter, by contrast, are aperiodic events and the
current processing practices vary from simple averaging of the waveforms to various
functional expansions (including the classical Fourier spectrum). Some typical
studies addressed to the ongoing EEG are listed below : descriptions of correlates
of various states of consciousness in astronaut candidates (Walter, Rhodes & Adey 30);
sorting of different phases of a tic-tac-toe game played by chimpanzees, including
correct and incorrect decisions (Hanley et al 31); and coupling between brain
structures in the visual and other systems (Galbraith 32, 33). In a recent study on
patients with schizophrenia, some methods have characterized changes in the EEG
induced by septal spiking (Hanley et al 34), identification of autistic behaviors in a
child (Hanley et al 35), and discrimination between psychotic rituals and normal-
appearing behavior in an adult with chronic disease (Hanley 36, Hanley et al 37).
It has also been possible to distinguish between subjects before and after the in-
halation of cannabis sativa and between subjects who are in normal and hypnotic
statesas wellas withindifferentsuggestivehypnoticstates(Hanley etal,in preparation).
The basic tool that produced these differentiations is spectral decomposition,
sometimes followed by discriminant analysis (Dixon 38). All required the selection
by the experimenter of EEG epochs of various lengths (generally around 10 sec)
and the subsequent correlation of the measured EEG parameters with the correspon-
ding sequence of assumed behavior of the subjects. These studies have unquestionably
demonstrated that some EEG changes can be detected by spectral methods. In
their present form, however, the methods have produced somewhat erratic results
and interpretation of the observed changes has been difficult, perhaps because
traditional methods of frequency analysis destroy information about the temporal
sequence of the EEG components.

A completely different approach was taken in a recent study by Nirenberg &
Hanley (39). They found that a phase discontinuity in the ongoing EEG signaled
the decision to flex a given set of muscles before the motor action occurred. The
phase transition was detected by an optimally tuned phase-locked computer
algorithm. A brief unlocking of the loop was obtained in response to the discon-
tinuity, thereby providing a sharp, short pulse to signal the decision. This was the
first time that phase-locked techniques had been applied to EEG signals and also
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the first time that short electrical events were detected that seemed to reflect a mental
decision. The phase-locked tracking filter thus offers a promising route for such
applications as the control of prosthetic devices.

By contrast with the continuous EEG waves, evoked responses are short (0.5-2 sec)
perturbations of the EEG, time locked to a stimulus, or to some well-defined neural
or behavioral event. The time of occurrence of this event (e.g., presentation of the
stimulus) is therefore an integral part of the data. Classically, the problem is to
identify response waveshapes and to determine how these vary with what the experi-
menter assumes to be the stimulus parameters. Sometimes this is done by simple
visual inspection, but the natural mathematical approach to this problem (classical
with finite energy signals) is based on the expansion of the waveform on a function
space with some appropriate choice of basis functions.

Orthogonal representation has been used by several investigators: Freeman
(40-42) used sets of damped sinusoids. Lehmann & Fender (43) fitted a set of Gaussian
curves aligned on the peaks of the waveform, the first component corresponding to
the larger peak. Both of these approaches contain a heuristic element that can be
avoided using the Karhunen-Loéve expansion (Raviv & Streeter 44), in which the
basis functions are not preassigned, but where the first component is constructed so
as to account for the maximum variance in the data and additional components for
additional portions of the remaining variance. The so-called principal component
analysis method (John et al 45, Ruchkin et al 46, and Donchin 47) is equivalent to
the Karhunen-Loéve expansion. In all the studies above, the raw data is obtained
by averaging the responses to several trials in an attempt to eliminate the “‘noise”
due to many factors that escape experimental control but nevertheless affect brain-
states. The averaging technique has often been assumed to eliminate the effects
of the “‘background activity.” Mathematical models of the responses are thus
obtained, but the expansion coefficients obtained for any single trial will, in general,
differ greatly from those of the models. Donchin (48) showed that single trial classi-
fication was possible. In his approach, a few points in time are chosen by discriminant
analysis that yield optimum discrimination. Subsequently, classification of single
responses is based on the same points, ignoring all others. When both principal
component and discriminant analyses are applied, it is found that the points selected
appear to bear a simple relation to the peaks of the principal components, thus
perhaps betraying an underlying mathematical relation between the two methods.
Another successful treatment of single trial responses has also been reported (Palmer
et al49, Woody 50).

OPERANT CONDITIONING OF NEURAL EVENTS

All the work reported above can be classified as “‘correlative.”” To elucidate the
way sensory input or behavioral output is represented or “‘coded,”” neural events are
observed that are coexistent with these stimuli or behaviors. At a later time the data
is examined for correlation between arbitrary attributes of both the event and the
stimuli. “‘Significant” correlation is generally considered a valid result. The data
available from correlative studies would offer precious little hope that the variations
detected in the brain signals could ever provide reliable indicators of brain states.
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Considerable and sometimes seemingly hopeless variations are the rule rather than
the exception. The reason for this variability can be traced to a number of causes;
for instance:

a. The stimulus input is always incompletely characterized. Its *‘relevant”
attributes are unknown as are the many possible indirect or concomitant influences
elicited by the nominal input that are capable of influencing the neural output.

b. The “state” of the brain is unknown at the time the stimulus is presented
(i.e., in the language of system engineering the system has undefined initial conditions)
and even whatever state information is available (e.g,, in the EEG potentials) is
generally ignored.

A new approach to experimenting with brain signals has appeared in the last few
years, namely the operant conditioning of neural events (OCNE), which alleviates
some of these problems and brings a different perspective into the field. The key
feature of the method is the use of the neural event itself as reference parameter while
the experimental subject or animal is given a broad range of free behavior, from
which he can choose the easiest or most effective means to reinforce the event.
The approach has been applied both to spontaneous EEG (Carmona 51, Chase &
Harper 52, Sterman et al 53, Black 54, Brown S5, 56, Green et al 57, Kamiya S8, 59,
Paskewitz et al 60, Peper 61, and Peper & Mulholland 62), and to evoked responses
(Fox & Rudell 63, 64, Rosenfeld 65). It has been suggested that using paradigms of
this type will establish reliable and stable correspondences between behavioral
(peripheral) events and the chosen neuroelectrical potentials. It is further proposed
that this relationship will be a natural one as it has been selected naturally by the
subject. While the validity and implications of these claims are still controversial, the
method has shown tremendous efficiency in increasing the ‘‘reliability’’ of neural
responses. For instance, in a study of human scalp potentials reported by Rosenfeld
et al (66), a twofold increase was obtained in the frequency of occurrence of an arbi-
trarily selected potential in the evoked response. Typically, a rare event is arbitrarily
selected in the neural response and reinforced until it becomes associated most of
the time with the stimulus.

The emerging role of operant conditioning of neural events was summarized by
Black (67), who suggests that it opens new possibilities as an investigative tool in
neurophysiology and neuroanatomy, as a way of control over neural processes,
central (internal states) and peripheral (behavioral states), and as a process in itself
to be studied in its relation to the phenomenon of learning. In our present perspective,
a fourth function is proposed : that is, as a means of control over external processes,
such as computers or prosthetic devices.

A PILOT PROJECT IN DIRECT BRAIN-COMPUTER COMMUNICATION
GENERALITIES

The remainder of this chapter is concerned with a specific attempt to test direct
brain communication, namely, the Brain Computer Interface project conducted at
the University of California, Los Angeles. This project was born of the conviction,
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based on current evidence, that EEG waves contain usable concomitances of con-
scious and unconscious experiences and that the set of continuous electric signals
observed does not for the most part consist of random noise as was often suggested,
but on the contrary, constitutes a highly complex but significant mixture that
reflects underlying neural events. This is not to say, obviously, that these neural
events could always be separable on the basis of EEG alone, or that the EEG wave
*‘signature” has to be unique with respect to any given brain *‘state.” It has been
shown (Fox 68) that slow wave phenomena, such as EEG and evoked potential,
while surely due to the synchronous action of synaptic potentials, also reflect the
momentary fluctuation in the probability of firing in the cell population in the
vicinity of the electrode. It is then suggested that this sequence of shifting probabilities
represents a sampling of the very language implemented at the surface of the cortex
even if it is unlikely that any specific expression of this language be unique for a
given experiment or subject.

The Brain Computer Interface system is geared to the use of both the spontaneous
EEG and the specific evoked responses triggered by time-dependent (visual) sen-
sory stimulation under various conditions. In addition, other biosignals that are of
interest for interfacing the physiological man and the machine are to be included
later in the project. Eye movements, muscle potentials, galvanic skin reflex, and heart
rate are ready examples which hold promise for particular applications. Acoustic
and somato-sensory evoked responses also need to be evaluated since the latter, in
particular, affords less variability than the visual evoked responses. Of special
interest also is the contingent negative variation (CNV), a slow negative baseline
shift of the EEG signal that relates to expectation, attention, and arousal (e.g., Tecce
69). Any of these phenomena would find a natural place in particular applications.
The first studies, however, are focusing on the control and conditioning of time-
domain attributes of the EEG phenomena and of certain visual evoked responses.
Indeed, for these experiments visual patterns are choice stimuli because they provide
a potential support for nonverbal symbols in man-machine communication lan-
guages and in that respect afford much more flexibility than other modalities,
including the acoustic.

DATA ACQUISITION AND PREPROCESSING

As indicated before, both ongoing EEG and evoked potential have exhibited
considerable variability in most correlative studies. Clearly, a completely different
approach is necessary if one is to extract reliable clues from the neural chatter.
Our proposed approach, a combination of somewhat radical computer processing
techniques with experimental strategies for operant conditioning under elaborate
computer control, will now be discussed.

Early in the development of this project it had become obvious that most current
methods and practices of EEG data acquisition and processing were utterly in-
adequate for the level of discrimination that was required in the proposed framework.
Most of the early effort was invested in identifying the areas where improvement was
realizable. First, the signals must be acquired with an absolute minimum of instru-
mentation noise. If finely structured information is available in the EEG, it must rest
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in the miniature wavelets that remain in each channel after ‘“‘common mode”
rhythms and dominant signals have been removed. Ideally, input noise should fall
below the microvolt level. The thermal noise limit within the usual range of band-
width and electrode resistances is of the order of 1/10 uV at body temperature.
There are ominous indications, however, that the current arsenal of EEG instrumen-
tation falls far behind in this respect. An unintended opportunity to measure this
incident noise is often found in recorded EEG data (including some public data such
as the Normative Electroencephalographic Data Reference Library 70) because
recordings have been made with an electrode pattern that contains loops. For
example, whenever three electrodes are used to produce three bipolar derivations,
any one channel can be derived from the other two, neglecting instrumentation
noise and distortion. In fact, each closed loop contains a redundant channel (i.e.,
linearly dependent upon the others). These practices suggest that many researchers
in the past were not under excessive pressure to remove redundancies. Tests were
carried out with our own data that suggest that even with the best EEG equipment
available commercially, the noise figure is downright unacceptable to anyone
interested in tracking down the waveforms beyond the dominant rhythms. Typically,
a four-channel loop yielded residue power in the redundant channel that was of the
order of one-third of the original (in theory it should have vanished). This noise level
had nothing to do with the analog-to-digital conversion, which was performed to the
tenth binary place (0.1 %), but resided with the electroencephalography equipment.
Perhaps relief will come from miniature low-noise amplifiers that can be attached
directly to the electrodes and are currently being developed in various laboratories.

Once low noise preamplification has been achieved, the signals are transferred to
digital format using multiplexers and analog-to-digital converters. A rate of 128
samples per second is a minimum that still generates over 2000 digital words per
second for a 16-channel collection.

The first step in preparing the EEG signals for subsequent analysis is the removal
of perturbations of nonneural origin such as ocular (EOG) artifacts. The problem
has now been solved to a large extent. By contrast, the more elusive ‘“‘muscle”
artifacts remain unchallenged to this day. The EOG artifacts are a major source of
extraneous disturbance originating in the electrical polarity of the eyeball. The
effect is a reflection of the induced electrical field that moves when the eyes move in
their orbits. They can be satisfactorily removed by subtracting an appropriate
function of the horizontal and vertical component of the EOG signals from each
electrode (Girton & Kamiya 71). Following EOG removal, the “‘raw” EEG samples
are rearranged to provide ‘“‘monopolar” channels that can be referred to a single
electrode rather than toa pair. In Figure 1 only the vertex channel (CZ) isa monopolar
lead, chosen because the vertex is relatively free from the muscle artifacts generated
from facial or neck muscles. For all the other channels, a *‘bipolar” derivation is
used to reduce these artifacts. The relative merits of monopolar and bipolar deri-
vations have been the object of heated controversy among neurophysiologists. For
instance, Landau (72) denounces monopolar recordings as meaningless. In the
present context, however, they are strictly equivalent. The original choice is prefer-
able from the standpoint of instrumentation but led to labeling difficulties that are
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removed by the subsequent transformation. No claims are made at this point that
the chosen configuration facilitates the localization of the EEG sources.

The monopolar transformations combined with EOG compensations are sum-
marized in the following set of equations:

Amplifier Inputs EOG Correction Corrected Monopolar Potentials
A1=T3-CZ Bl = Al — El T3 = Bl + B7
A2=T4-CZ B2 =A42 - E2 T4' = B2 + B7

A3=F3 -T3 B3 = A3 - E3 F3' = B3 + Bl + B7
A4=F4 — T4 B4 = A4 — E4 F4 = B4 + B2 + B7

A5=01 — T3 B5 = AS — ES 01" = B5 + Bl + B7

A6=02 — T4 B6 = A6 — E6 02" = B6 + B2 + B7

A7 = CZ [reference (ears)] B7 = A7 — E7 CZ = B7

where E1, E2... E7 represent the EOG correcting potentials, a fixed linear com-
bination of the two components of the EOG as determined during a calibration run.
It must be noted that the compensation can be implemented at the analog level
(that is, before digital conversion) using potentiometers and differential amplifiers.

A second step, still part of the preprocessing phase, is a novel attack on common
modes and redundancies of neural origin that are present in the EEG and especially
in the scalp recordings considered in this study. It is readily apparent from even
casual observation of EEG recordings that a large degree of redundancy is present
between the different channels. Tissue conduction as well as functional connections
between various areas of the brain contribute to this ‘‘crosstalk.” Functional
interactions are significant features that researchers would try to eludicate from the
data. Tissue conduction across the skull and the scalp, on the contrary, constitutes a
blurring factor. Because of it, it is generally considered unrewarding to place elec-
trodes at less than 3 cm apart on the scalp. To alleviate these problems and isolate
the sources of redundancies, an additional transformation is imposed on the raw
EEG signals. In our opinion, this technique, which *‘orthogonalizes” the signals,
offers considerable promise to clean up the EEG waveforms by isolating common
rhythms and, to some extent, “‘deconvolving” the crosstalk effects. The original
study (Glassman 73) was conducted as part of the present project. The method
consists of calculating zero time correlations between channels as the data is col-
lected and of orthogonalizing the time series in some arbitrary sequence with respect
to each other. The first experiments with the “‘orthogonal derivation” have demon-
strated that it has the power of removing considerable amounts of common activity
between channels. The procedure can be summarized as follows:

Let

X = {X)} i=12,...,N
represent the set of raw EEG waveforms for N channels. X is assumed to have zero
mean, and

V={V} i=12...,N
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to be the set of mutually orthogonal waveforms of unit variance, related to X by the
relation

X=CV L.

where C is a lower triangular matrix of coefficients that must be computed. It is
nonsingular, providing no diagonal element of C vanishes. That is, there must be
no loop in the channel diagram.

Now let R(X) be the covariance matrix of X. By hypotheses, R(V) = I, the identity
matrix. Then, assuming zero mean for X,

R(X) = E{XXT} = E{CVVTCT} = CCT 2.

where E denotes the expectation and the superscript T denotes the transpose of the
corresponding matrix.

If an estimate of R{X) is obtained, then C can be evaluated recursively, using
Equation 2, and subsequently inverted. Finally, since

V=C1'X 3.

the orthogonal set can be constructed. Because of the triangular form of all matrices
concerned, calculations are greatly simplified. On the other hand, R(X) is evaluated
directly by forming the cross products and estimating the expected values r;; with a
time-varying first-order filter that produces ‘‘infinite” memory, exponentially
weighted past averages.

The full potential of the “‘orthogonal derivation” still remains to be assessed.
Certainly, with respect to the present information yield of EEG data, it should at
least provide a drastic data reduction. Conversely, if the decoding of the small
fluctuation in the EEG should prove possible after all, the orthogonalization as a
preprocessing technique should prove invaluable as an enhancing device because of
the removal of the masking effects of the dominant influences. The expectation,
which would have considerable clinical value, is that the orthogonal derivation may
help in the spatial discrimination of EEG processes. In other words, it may become
possible to identify activity specific to the site of the corresponding electrode. This
may be achieved by performing several orthogonalization sequences in which each
channel is placed in turn at the end of the sequence. Work is being pursued to
evaluate these speculations.

COMPUTER ANALYSIS

The data transformations described in the previous paragraph constitute a
preprocessing phase or preparation for final computer analysis. A major problem in
EEG research is the enormous amount of raw data that is being produced. A
14-channel recording, for instance, sampled at the rate of 256 samples per second,
creates over 3500 sample digital words per second. EEG experiments usually last
from one-half hour to several hours (as in sleep studies), and it is easy to imagine the
staggering size of the data sets that could be created during such experiments.
Preprocessing techniques, such as the one just described, will do nothing to alleviate
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the situation since the preprocessed data will occupy the same or even a larger
volume than the original. To improve this situation, researchers have classically
limited their analyses to short epochs of 10 seconds or less, either chosen arbitrarily
during the stationary *‘state” of the experiment (for ongoing EEG) or, on the contrary,
attachedtoaneventthatproducesa time-locked, transient response (evoked response).
In addition, extensive use has been made of magnetic tape recordings, both analog
and digital. Indeed, the laboratory computers used for digitizing seldom had
memories large enough to accommodate the data. After the recordings have been
reduced to a set of finite epochs, spectral or functional analyses can be performed
to further reduce the bulk.

In many cases, however, this is still not enough. A typical spectral analysis over
N channels will produce N auto-spectral densities and [N(N — 1)]/2 cross-spectral
densities. Adding phase angle and coherences, we find that a 16-channel analysis
will yield 376 numbers for each one of the frequencies considered in the analyses.
If frequencies from 0 to 32 Hz are considered in 1-Hz steps, then over 12,000 numbers
are generated for each epoch. If the epochs are 10 sec long, the data compression ratio
is amodest 3 to 1, although the use of graphs to represent the results will help some-
how. For final sorting of the results, stepwise discriminant analysis programs have
been used extensively and sometimes carelessly. Similar techniques are used with
evoked responses except that spectral transforms rather than spectral densities are
used, since evoked responses are nonstationary time-locked events that can be
brought into the category of finite energy signals. Integral transformations other
than the Fourier transform can also be applied. A major characteristic of evoked
response studies, however, is the almost universal practice of averaging to separate
the responses from the ongoing background activity.

All these methods are geared to a type of computer procedure known as batch
processing, where data sets are created during an experiment and analyzed later.
None of them is readily amenable to the interactive, on-line, real-time feature
extraction that the present project demands. To appreciate the difference, a few
more words must be said about the constraints specific to this type of system, con-
straints that led to the special computer architecture described in the next paragraph.

Yourdon (74) defines computer systems as ‘“‘on-line”’ when they accept input
directly from the point where the input is generated and return the output directly to
the point of consumption. They are also characterized by a randomly accessible
memory, preferably one that is part of the core memory of the main computer. The
on-line concept also implies man-machine interaction of which the system discussed
in this chapter is an extreme example. Another concept applicable to brain-computer
interaction is that of *‘real-time”’ as defined by Martin (75): ‘“‘a real time computer
system may be defined as one which controls an environment by receiving data,
processing it and returning the results sufficiently quickly to affect the environment
at that time.” In terms of directly communicating brain messages, this would imply
a round trip of less than 0.5sec. For interactive work, the methods described
above are bulky and costly, but above all, they are generally designed in a way that
precludes real-time analyses. That is to say that they require a whole epoch of one to
several seconds to be deposited in memory, or worse, that a large number of those
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epochs be averaged together, before starting the computation. Averaging techniques
are totally inapplicable in this project. Spectral methods, on the other hand, can be
adapted to produce continuous estimates based on some span of past data. Never-
theless, one of the EEG correlates that appears the most promising at this time is the
interchannel correlation coefficient, itself a by-product of the orthogonal derivation
discussed earlier. Glassman (76) showed that those correlation coefficients behave
smoothly and exhibit stable epochs separated by sharp transitions. Those stable
epochs can be clearly identified without reference to spectra. Figure 1 illustrates the
behavior of some of those functions over a period of 45 sec. The easy and immediate
recognition of the times of transition may lead to substantial improvement in the
processing. In particular, this knowledge will allow slicing the data in such a way
that analysis always rests with data collected within those stable subepochs by
uncoupling the computer program from data belonging to a past history charac-
terized by a different state. The situation with evoked response also requires
complete reevaluation. As mentioned before, there has been to this time very little
work addressed to the identification of evoked response on the basis of a single event.
However, to use the evoked response to a given sensory stimulus such as a visual
pattern in an interactive man-machine dialogue, recognition must be made on the
basis of a short section of EEG waveform containing the response.

Tomeet this challenge, each incoming response must be compared with a *‘reference
set”” and classified without benefit of averaging. A new method has been developed as
part of this project (Schwartzmann 77) that allows the constitution of reference sets in
acontinuum of conditions rather than as discrete classifiers. Specifically, the approach
consists of analyzing the family of reference-evoked responses (obtained during
*“training”) to find the number of dominant input parameters that have varied
through experimental (or accidental) realizations of the process (that is, presentation
of the stimulus). At the end of the training phase, the reference set is described by M
output responses corresponding to M separate presentations. Using an orthogonal
basis, we represent them as points in a linear function space E, .

An error due to this approximation will be made. The value of N is chosen such
that most of the function energy is preserved (e.g., 95 %). The choice of the basis is
arbitrary but will influence heavily the performance of the method. Choices can be
made, for instance, between Fourier and Walsh series, Karhunen-Loéve expansion,
or simply the raw sample values, which is equivalent to using delta functions as
functional basis. One-to-one, piecewise continuous mapping of the input parameters
into the output space is assumed. The minimum number K of “‘free’’ parameters
needed to represent the output set is called the intrinsic dimensionality of the process.
The problem reduces to the determination of the topological dimensionality of the
cluster of points formed by the output functions in Ey. A minimum spanning tree
is created by the computer to map the input influences into the cluster of points.
This tree becomes a reference map or scale that can be used to label and compare
any new response with the reference. Separately, an adjoint mapping procedure was
developed that allows display in two dimensions of the cluster of points on the
computer graphic terminal. This method provides a model-free description of
evoked responses that avoids averaging or other loss of information.
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COMPUTER ARCHITECTURE OF THE BRAIN-COMPUTER INTERFACE PROJECT

The project is centered on the laboratory illustrated in Figure 2. Implementation
of this system started late in 1971 and is still underway.

The main features are as follows : Subjects are monitored from a specially designed
shielded enclosure that contains various input devices and output displays. The
experimenter sits in an adjacent room containing the control terminals to the various
computers as well as the recording equipment for EEG and other biosignals. This
arrangement permits interplay between subject, experimenter, and computer in
staging complex tasks and bringing feedback information to the subject. The EEG
signals are preamplified by specially designed preamplifiers and monitored on con-
ventional chart recorders. The amplified analog signals are routed directly to a
digitizing station capable of handling 50 simultaneous channels. In the laboratory, a
small dedicated XDS 920 computer acts as data input controller and real-time experi-
ment scheduler. The data acquisition program deserves special attention: This pro-
gram, called real-time data handling supervisor (DHS), enables the XDS 920 and its
associated peripherals (analog-to-digital converters, digital-to-analog converters,
multiplexers, relays, pulses, sense switches, and parallel logic lines) to coordinate the
real-time collection, analysis, and display of EEG data. DHS operates via a remote
station with a lighted panel display of its status. It can be operated alone or in con-
junction with the rest of the system. The DHS can transmit data from up to 32 analog
inputs at a rate of 128 samples per second (approximately 50 kilobits/sec). The data
can be ordered in epochs of variable length with each epoch labeled for reference by
subsequent data handling/processing programs. Simultaneous analog time marking
signals are produced for the analog data records. An XDS Sigma 7 computer, whose
main function is to serve the UCLA node of the ARPA Network, is used for general
experiment control (which includes control of the 920 scheduler) and is operated
through a terminal printer in the laboratory. It operates under a time-shared system
(SEX), particularly well suited to the sophisticated handling and editing of small files.

The main computing power is provided by the campus IBM 360/91, which is
equipped with an exceptionally large core memory of 4 M bytes. High-speed parallel
data links connect all four computers involved in the system (Figure 3). The digitized
data thus reaches the IBM 360/91 through a parallel port and is written directly into
core. Feedback returns are retrieved the same way. A monitor program in the 360/91
controls the data flow and the processing protocol from a privileged position with
respect to the 360/91 operating system software to optimize response time. Complex
programs such as spectral or functional analysis of the signals can be performed in
real time with results fed back to the laboratory in graphic form. The ‘‘awakening”
of the software system and all subsequent file handling are performed under the
campus-wide, time-shared system (URSA) and controlled by a CRT terminal (CCI)
in the laboratory.

Finally, an IMLAC PDS-1 mini-computer and display terminal with 8 K of
memory is reserved for the generation of visual feedback display and for other
output functions. The PDS-1 derives great flexibility and speed from the combination
of dual parallel processors sharing the same core memory. The display processor
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data flow in the multiple computer structure.

interacts with the mini-computer only when it requires data from core to update
graphical information on the screen. Smooth curves and figures can be displayed
and manipulated while on-line with the processing computer (ie., the 360/91).
In addition, the PDS-1 can function as a stand-alone computer. A flying spot
scanner (Dalto 500) is available to create background images that can be combined
with computer outputs. A large computer display scope is associated with the scanner.
The scanner and display can be placed under computer control and used in the
creation of visual stimuli.

EXPERIMENTAL STRATEGY

Experimental possibilities with this system are unbounded. Generally speaking,
one should seek to identify features in the EEG and in the evoked response signals
that constitute potential codes for the direct communication of specific mental
messages. These would be of the kind that occur in interactive man-computer
communication such as: recognition of a clue (or matching), its acceptance and
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rejection, choice between (visual) alternatives, arbitrary positioning of a pointer on
a screen, etc. The next step would be to systematically evaluate the range and band-
width (that is, the time penalty imposed by each distinguishable feature) in the
EEG “‘signatures” and to determine the rules of association of those features (syntax).
In addition, one should determine the natural modalities of sensory messages and
conscious experiences that lead to easy discrimination and conditioning, or in other
words, find some of the semantic constraints on this type of brain message. The study
must involve the subject in an interactive or “‘game playing” situation that offers
reward for performance and, therefore, constitutes a form of operant conditioning.

Experiments with ongoing EEG require a continuous analysis. Incoming data
must be placed in a “push-down’ memory store of adequate length in order to pro-
vide the processor with adequate epochs of data. Processing need not occur every
time a new sample is added; however, the requirement of effective feedback still
places severe constraints on the amount of processing that can be contemplated if
the system is to keep up with the input data flow. In this respect, time domain
analyses have distinctive advantages and the early experiments will be focusing on
studies of this type. As mentioned earlier, interelectrode correlation coefficients have
been shown to constitute promising correlates of brain activity. Early off-line
experiments demonstrated definite shifts together with stable correlation levels
between shifts. Such “‘states” of the correlation functions typically lasted for a few
seconds. On-line experiments will determine if these functions do correlate naturally
with mental states or if they are amenable to reinforcement by operant conditioning.

To implement the conditioning paradigm, a correlation map such as that illus-
trated in Figure 4 will be calculated continuously from the incoming data and
displayed in real time.

Another promising route for feature extraction in ongoing EEG has been opened
recently in experiments using phase-locked loops. Nirenberg, Hanley & Stear (78)
showed that voluntary triggering of EEG phase transients was obtained in response
to motor decisions (in this instance, a decision by the subject to clasp his hand). The
original experiment was done with off-line processing on a graphic console IBM
2250.Therewas, therefore, no feedback to tell the subject of successful discrimination
or any false alarm. The separation that was obtained then, although admittedly not
perfect, did not benefit from reinforcement. The same experiment will be attempted,
after adjustment to present hardware and software constraints, with a visual dis-
play of the open or closed hand according to the computer guesses. Performance
scores will be taken to trace the influence of the conditioning procedure.

Two specific experiments centered on evoked response are also planned. With
sensory stimuli (e.g., visual stimulus such as a geometric pattern), the evoked response
depends on such factors as the geometric structure of the pattern (White 79, John et
al 80, and Spehlmann 81), the light intensity and wavelengths (Clynes et al 82), the
particular feature in the pattern to which the subject has selectively directed his
attention (Gardiner & Walter 83, Steinberg 84), and the cognitive content of the
stimulus such as the meaning of a pattern in the experimental context (Sutton et al
85, 86, Chapman 87). Autonomic influences such as those of the cardiac and res-
piratory cycles have also been reported (Callaway & Buchsbaum 88). Generally
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BRAIN COMPUTER INTERFACE

Correlation map on
graphic terminal display

FIGURE 4. Interelectrode correlation map, as shown on computer graphic display.

speaking, anything that could affect the internal state of the brain is a potential
factor of influence. This, of course, must include the state of the EEG itself at the
time, or immediately before the delivery of the stimulus, since there is definite
interaction between the evoked potentials and the ongoing activity. Indeed, the
observed potentials betray, however incompletely, the “state” of the underlying
cortex. Thus, by eliciting a response only at the time when a given “‘initial state” is
observed, rather than at arbitrary instants, one removes a source of variability in
the system response. That this is indeed the case has been shown in particular when
the stimulus is applied at a given point in the time cycle of an alpha wave (Remond
& Lesevre 89, Bremer 90) or under different states of correlation between brain
structures (Galbraith 91, 92).

For the purpose of this project, the following experimental parameters will be
considered :

(a) The *‘condition” upon the realization of which the stimulus is delivered.
(At arbitrary time intervals, or upon the detection of a given feature in the EEG
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signal such as a given phase in the alpha cycle or a given configuration of the
correlation map.)

(b) The stimulus structure (pattern shape, sound pitch, etc).

(c) The particular feature in a complex stimulus to which the subject has selec-
tively directed his attention (e.g., the set of vertical lines versus horizontal lines in a
grid pattern).

(d) The meaning of the stimulus in the context of a given application, i.., the degree
of novelty (expectation) of the stimulus, or its acceptance or rejection in context
(whether the occurrence of the stimulus represents a gain or a loss).

Each one of these factors may shape the evoked responses in a characteristic
manner. In the system, the two first factors are selected by the control computer.
In the man-machine dialogue, their selection represents the ‘“‘questioning” strategy
of the control program while the two last factors constitute either voluntary or
subconscious “‘responses’ from the human subject. Upon receiving the response, the
processing computer will be asked to evaluate it against some reference measure and
to generate the appropriate feedback to the subject. Parameters of type (a) and (b)
are part of the design of the experiment and can, in principle, be selected arbitrarily.
Parameters of type (c) and (d) reflect the subject’s voluntary choices or the subject’s
reaction to the stimulus, i.e., precisely the mental information to be transmitted to
the computer. In view of these facts, experiments will be planned along the following
lines: Find the type of condition (a) and pattern structure (b) that “optimally”
improve single response discriminability with respect to given ‘‘mental” parameters
(c) and (d). The stimulus pattern and the conditions of presentation may be explored
over a large spectrum for each “mental’” parameter attached to the experimental
paradigm. One procedure of each type (voluntary or “‘deliberate’ versus subcon-
scious) of mental parameter is being investigated.

Selective attention (voluntary) to complementary features of a pattern—Grid
patterns will be used first, since they have proven effective in ER work. The task will
be to concentrate on either the horizontal or the vertical structure of the pattern.

This mental selection is analogous to the well-known phenomenon of figure-
ground reversal in perception psychology (e.g, Gregory 93). Perceptually, the
subjgct can ignore one of two complementary features of an image and concentrate
on the other. Because evoked responses are in part related to perceptual phenomena,
it is proposed that this shift of mental set will produce distinguishable evoked
signatures in the EEG, in very much the same way as shown in the Gardiner-Walter
experiments with tones. Furthermore, it is likely that those changes will somewhat
parallel the differences observed in independent experiments with pure horizontal or
pure vertical striped targets. Whether this holds true or not, however, would not
directly affect the outcome of the experiment, although it may shed some light on
the underlying neurophysiological phenomena. Response sensitivity to the stimulus
parameters will be investigated first, using the topological dimensionality approach
discussed earlier. This study will indicate if that choice of target is appropriate or if
changes should be made. A continuum of grid patterns will be used in which the
light intensity shifts progressively from the vertical to the horizontal components.
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Evoked responses along this continuum will be studied by dimensionality analysis
to establish the reference functions in the computer. The pattern generation as well
as the evoked response analysis programs will be placed under the control of the
processing computer. The subject will be presented with repeated flashing of a grid
pattern on the graphic terminal screen. The task will consist of reducing the pattern
to a set of either horizontal or vertical lines by exercising control over the figure-
ground perception in the appropriate direction. The preliminary experiments will
have provided the computer memory with a functional nonlinear map relating the
response ‘“‘trajectory’’ with the input parameters. Therefore, any incoming evoked
response can be labeled from its functional projection on the trajectory. The next
target flashed will then be modified in the corresponding direction. In other words,
if the response is such that some of the “horizontal” features have been suppressed,
the next target will reflect that fact by displaying the horizontal lines with less
intensity. The subject is, therefore, given a real-time score of this performance and
can evaluate the control that he gains over the phenomenon. Meanwhile, the
responses are automatically incorporated in an updated reference set in order to
account for the adjustment in the response produced by the operant conditioning.

In this particular experiment, the computer can choose the instants at which the
stimulus is presented. Therefore, by choosing appropriate EEG conditions to
determine each time of presentation, one hopes to reduce the uncertainties associated
with single response discrimination. As mentioned earlier, Galbraith has shown that
evoked responses were dependent upon the state of correlation between various
parts of the brain. Although this study was confined to correlation between cortical
and deep structures, it is conceivable that the same holds for correlation between
different cortical sites. Therefore, time of presentation will be tentatively linked to the
state of the correlation coefficients (as shown on the correlation map) to determine
their effect on response stability.

Evoked-response experiments with cognitive parameters—In the experiment dis-
cussed in the previous paragraph, the computerdiscrimination of the evoked responses
was based on the reinforcement by conditioning of response features that were bound
to the physical structure of the stimulus or to its perception. By contrast, the second
type relies on the cognitive influences that would modify the waveform evoked by an
otherwise identical stimulus. A first implementation of this type of paradigm will
incorporate a well-known graphic program (space war) in which subjects are given
an opportunity to fire “missiles” at opponents’ space ships. A visual event that will
create an associated evoked potential is provided by the ‘‘explosion” of either ship
on the display screen. Thus, the same visual event will be associated with a different
state of mind or expectation whenever the subject witnesses the destruction of his
opponent’s ship rather than his own. In the implementation, the opponent’s ship is
controlled by the computer, which plays a fairly aggressive albeit standard strategy
in attempting to destroy the subject’s spaceship. When an explosion occurs, an
interrupt signal is generated by the display processor for the benefit of the real-time
data handler program, and an epoch of EEG data time-bound to the explosion is
entered into the system. The epochs are defined on both sides of the triggering event



Annu. Rev. Biophys. Bioeng. 1973.2:157-180. Downloaded from www.annualreviews.org
by ILLINOIS STATE UNIVERSITY on 11/15/12. For personal use only.

178 VIDAL

to include some lead time. Again, the procedure starts with a learning period during
which the computer establishes its reference data. A score is displayed that is ori-
ginally determined by the number of games won by the subject versus those won by
the computer. When enough points have been acquired for a decision rule to emerge
with acceptable confidence limits, the scoring rules are modified and gains are
doubled if accompanied by correct classification of the evoked response, cancelled
otherwise. Losses are cancelled for correct classification and doubled otherwise. This
rule is intended to provide an operant conditioning paradigm where the operant
neural events are correlates of cognitive parameters in the stimulus. Similar experi-
ments could conceivably be designed to investigate the flash or **hitch’’ of recognition
arising from novelty or the various abrupt arousals which it has been speculated
make learning possible (assuming, for instance, that only those events that cause
internal satisfaction or dissatisfaction are specifically perceived and conducive to
learning). The above experimental procedure although admittedly simpler in scope
would be a first step in this direction.

CONCLUSION

As the reader undoubtedly realizes, direct brain-computer communication still
lies somewhat in the future. Even the relatively modest experimental program out-
lined in this paper may take several years to reach maturity, at which time new
directions probably will have emerged.

In summary, it can be said that the feasibility of the communication concept rests
on three basic assumptions. The first assumption is that mental decisions and
reactions can be probed, in a dimension that both transcends and complements
overt behavior, from the array of observable bioelectric signals and, in particular,
from the electroencephalographic potential fluctuations as measured on the human
scalp. A second assumption is that all meaningful EEG phenomena should be
viewed as a complex structure of elementary wavelets, similar in nature to components
of evoked responses, that sequentially reflect individual cortical events and create a
continuous flow of neuroelectric messages. The third assumption is that operant
conditioning procedures can increase the reliability and stability of these time
signatures and patterns.

Admittedly the validity and implications of these assumptions are far from
universally accepted. The view, for instance, that the EEG is organized in sequential
waveforms reflecting brain states on amoment-to-moment basis contrasts somewhat
with a portion of the classical literature that concentrates on brain rhythms. On the
other hand, considerable experimental evidence lends credence to the proposed
concepts.

The program outlined in this paper constitutes a first systematic attempt to
clarify these concepts and to establish their possibilities and limitations.
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