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1 ECONOMIC QUESTIONS AND DATA 4

1 Economic Questions and Data

1.1 Economic Questions We Examine

Econometrics seeks to answer fundamental economic questions through statistical analysis
of data, with particular emphasis on identifying causal relationships rather than mere
correlations.

The primary objectives of econometric analysis include:
e Causal effects: Understanding cause-and-effect relationships in economic data
o Policy evaluation: Measuring the impact of economic policies and interventions
o Treatment effects: Quantifying how changes in one variable affect economic outcomes

e Forecasting: Predicting future economic conditions based on historical patterns

1.2 Causal Effects and Idealized Experiments

The fundamental challenge in econometrics is establishing causality in observational data. The
gold standard for causal inference is the randomized controlled trial (RCT), but this is often
impossible in economics.

The key insight is that we want to compare outcomes under different “treatments” while
holding all other factors constant (ceteris paribus).

Key concepts include:
+ Randomized controlled trials (RCT): Gold standard for causal inference
o Ceteris paribus: “All else being equal” — the challenge in observational data
o Selection bias: When treatment assignment is not random

e Counterfactual thinking: What would have happened without the treatment?

Selection bias occurs when the assignment to treatment is correlated with other factors
that affect the outcome. This makes it difficult to isolate the causal effect of the treatment.

1.3 Types of Data

Economic data comes in several forms, each with distinct characteristics and appropriate ana-
lytical methods:

1. Cross-sectional data: Observations of multiple units at a single point in time

o Example: Survey of household incomes in 2025

o Useful for studying relationships between variables at a point in time
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2 THE BIVARIATE REGRESSION MODEL )

2. Time series data: Observations of a single unit over multiple time periods

e Example: Monthly unemployment rates from 1990-2025

o Useful for studying trends and dynamics over time
3. Panel data: Combination of cross-sectional and time series data

o Example: Annual income for the same individuals over 10 years

o Allows control for unobserved heterogeneity
4. Pooled cross-sections: Multiple cross-sections at different times

o Example: Different random samples of households in 2020 and 2025

o Different units observed in each time period

2 The Bivariate Regression Model

2.1 Model Specification

2.1.1 The Model

The simple linear regression model is the foundation of econometric analysis:

y=Po+piz+u (1)

Where:

y: dependent variable (outcome of interest)

x: independent variable (explanatory variable)

u: error term (unobserved factors affecting y)

Bo: intercept parameter

[1: slope parameter

2.1.2 The “As Good As Random Assignment” Assumption

Zero Conditional Mean Assumption: E[u|z] =0
This means that the expected value of the error term is zero for any value of x.

This assumption is crucial for causal interpretation because it implies:
e The error term is uncorrelated with the explanatory variable
o No omitted variables that are correlated with both x and y
« No measurement error in = (under certain conditions)

e No simultaneity bias

Econometrics 2025 - Personal Notes



2 THE BIVARIATE REGRESSION MODEL 6

The zero conditional mean assumption is often violated in practice, leading to the need
for more advanced estimation methods such as instrumental variables.

2.2 Population Regression Function

The Population Regression Function (PRF) is:

Ely|z] = Bo + b1z (2)

This shows the expected value of y given x. The PRF represents the true relationship in the
population that we want to estimate.

2.3 Interpretation of the Slope
The slope coefficient 51 measures:
e The change in y for a one-unit change in x

o The partial effect of x on y, holding other factors constant

o Under the zero conditional mean assumption, this has a causal interpretation

_ OE[y|z]
= =3 (3)

o3}

2.4 Meaning of Linearity

The model is linear in parameters, meaning the parameters 5y and [; enter the equation
linearly. However, we can have non-linear relationships in variables:

Example 2.1. Examples of models linear in parameters but non-linear in variables:

y = Bo+ prz? +u  (quadratic) (4)
y = Bo + P1log(xz) +u (logarithmic) (5)
2.5 Non-linearities
Common non-linear functional forms include:
« Quadratic models: y = () + 1z + foz® +u
e Log models:

— log(y) = Bo + Bi1x + u = semi-elasticity
— log(y) = Bo + B1log(z) + u = elasticity

o Interaction effects: y = By + f1x1 + Poxo + S3x122 + 1
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2 THE BIVARIATE REGRESSION MODEL 7

2.6 Changing Units
R —
When changing units of measurement:
e Scaling y by factor ¢: new slope = ¢x old slope
o Scaling z by factor ¢: new slope = old slope /¢

o Standardizing variables (using standard deviations) can aid interpretation

2.7 OLS Estimator

The sample mean 4y = % 1 y; minimizes the sum of squared deviations:
n
> (wi—c) (6)
i=1

This principle extends to regression analysis through the method of least squares.

Given OLS estimates 30 and ﬁl:
o Fitted values: 3; = Bo + lei

o Residuals: 4; = y; — §;

Residuals represent the unexplained portion of y after fitting the regression line.

The Sum of Squared Residuals is:

inai =0 (9)

The OLS estimators are:

. Y- D - D)
=5 - (10
Bo=9— hz (11)
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2 THE BIVARIATE REGRESSION MODEL

Theorem 2.1 (OLS Estimator Derivation). To minimize SSR = S (1; — Bo — f12:)?, we take

derivatives with respect to Sy and 1 and set them equal to zero.
First-order condition for fj:

0SSR L
950 ;Zl(y Bo — Bix;)
E yi —nPo — b1 E ;=10
i1 i—1

R 1& 1 N
Bo==> vi—bBi=> zi=4y—pi
n - n -
=1 =1
First-order condition for f;:

OSSR L
95 —2;%(% — Bo — fiz;) =0

n n n
dwyi— oY wi— Py x; =0
=1 i=1 i=1

Substituting fy = § — /17

n n n
ayi—G—5D)Y wi—py 2 =0
i1 =1 i=1

n

n n n
inyi —ngﬂi +B1:E2xi —ﬁlzxf =0
i=1 i=1 i=1

i=1
n n n n

e )

Bilzd wi—Y o) =gy xi—Y wwy
i=1 1 =1 =1

Since > i x; = na:

n n
4 ( _ Zx?) T
i=1 =1

B = S iy —nxy S (v — ) (yi — ¥)

1= — = -
i1 @ —na? it (@i — x)?

When z € {0,1} (treatment/control):

B1=§1—ﬂ0

(22)

This connects regression analysis to experimental thinking: the slope coefficient equals the

difference in sample means between treatment and control groups.

Example 2.2 (Simple Wage-Education Regression). Consider data on 5 workers with years of

education (z) and hourly wage in dollars (y):
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2 THE BIVARIATE REGRESSION MODEL

Worker Education (z;) Wage (v;)

1 12 15
2 14 18
3 16 22
4 18 25
5] 20 30

Step 1: Calculate sample means

12+ 14+ 16+ 18+20

T = 5 16
15 +18+22+25+ 30

Step 2: Calculate numerator and denominator

Z:(xi — )y —y) = (=49(=7) + (=2)(=4) + (0)(0) + (2)(3) + (4)(8)

=284+8+0+6+32="74
5
D (@ —3)" = (—4)° + (-2)" + 07 + 2% 4 47
=16+4+0+4+16=140

Step 3: Calculate OLS estimates

A 74
hr=15

By=22—1.85x16=22—29.6=—T7.6

=1.85

(29)
(30)

Interpretation: Each additional year of education is associated with a $1.85 increase in

hourly wage.
Fitted regression: § = —7.6 + 1.85x

The OLS estimator has several important algebraic properties:

1. Residuals sum to zero: >t ; 4; =0

2. Sample covariance between = and residuals is zero: Y ;- x;0; = 0
3. The regression line passes through the sample means: (Z,¥)

4. Fitted values and residuals are uncorrelated

2.8 ANOVA Decomposition

The total variation in y can be decomposed as:
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2 THE BIVARIATE REGRESSION MODEL 10

n n n
Y wi—9)?=) Gi-5’+y @ (31)
i=1 i=1 =1
N——
TSS ESS RSS

Where:
o TSS: Total Sum of Squares
o ESS: Explained Sum of Squares
e RSS: Residual Sum of Squares

\

2.9 Coefficient of Determination

The R-squared measures the fraction of variance in y explained by x:

Properties of R?:
« Range: [0,1]
« Higher R? indicates better fit
e R?=1: perfect fit

e R? = 0: no linear relationship

A high R? does not necessarily imply good causal inference. Correlation does not imply

causation.

2.10 Sampling Moments of the OLS Estimator

2.10.1 Desired Sampling Properties

Good estimators should have:
« Unbiasedness: E[3] = 3
o Efficiency: Minimum variance among unbiased estimators

e Consistency: 8 — fasn — oo

2.10.2 Gauss-Markov Assumptions

GM1 - Linear in parameters: The model can be written as y = By + S1x + u
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2 THE BIVARIATE REGRESSION MODEL 11

GM2 - Random sampling: {(z;,y;) : ¢ = 1,...,n} is a random sample from the
population

Assumption

GMS3 - Sample variation in the explanatory variable: Var(xz) > 0 in the sample

| '
.

Assumption

GM4 - Zero conditional mean: E[u|z] =0

Assumption

| r
.

GMS5 - Homoskedasticity: Var(u|z) = o2 (constant variance)

2.10.3 Mean and Variance of OLS Slope Estimator
Under assumptions GM1-GM4:

E[1|z] = 81 (unbiasedness) (33)
Theorem 2.2 (Proof of OLS Unbiasedness). Proof: Starting with the OLS estimator:
5 _ 2im1 (i = B) (Wi — 9)

i=1\%i — x
Substitute the true model y; = By + B1x; + u;:
5, = Zima (@i = D)|(Fo -l-nﬁl:vi + i) - (Bo + P17 + )] (35)
Zz 1(z; — I)
> SCEL PSS EXUE) )
2iz (@ )
_ By (mi =)+ 3 (2 — 7)(u — @)
- S B
_ 2ie 1(332—93)(%—@)
IR > e e
Since Y1 (@i — z)(u; — u) = Y iy (x; — T)u; (because Y1 (z; — ) = 0):
iz (@i — T)u;
BBt T P )
Taking expectations conditional on «:
3 >ic1(zi — 2)Efu
Efbila] = pr + ZEL DL (@)
Under assumption GM4 (E[u;|x] = 0):
Blfie] = 61 + 2P =D D (41)

= l(xl - $)2

Therefore, Bl is unbiased for ;.
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2 THE BIVARIATE REGRESSION MODEL 12

Under assumptions GM1-GMb5:
2

A o
Var(f1|r) = 3ST

(42)

where SST, = S0 (x; — 7).

Theorem 2.3 (Variance of OLS Estimator). Proof: From the unbiasedness proof, we have:

n _
A i= 1( '_‘T)ui
= 43
pr=p1+ T (2 1) (43)
- Ti—T .
Let w; = ) NEIEEIEE so that:
n
i=1

The variance is:

Var(Bl\x) = Var <Z WiU;
i=1

w) (45)

= Z w?Var(u;|z) (since errors are uncorrelated) (46)
i=1
= Z w?0?  (under GM5) (47)
i=1
= o2 Z w? (48)
i=1

n _ 2
Y o Gt
> <z;-;1<xj - :z~>2> (49)
_ 52 Sy (wi — 2)°
[ = 1( .%')2]2

o? o?

Theorem 2.4 (Gauss-Markov Theorem). Under assumptions GM1-GM5, the OLS estimator is
BLUE (Best Linear Unbiased Estimator).

Proof Sketch: Consider any other linear unbiased estimator 51 =Y.', ¢y where ¢; are
constants.

For unbiasedness, we need:

Il
Mﬁi

5 y] S By (52)

=1

ci(Bo + Przi) (53)

.
Il

M:H

ﬁ ¢+ B Z CiT; (54)

@
I
-

Econometrics 2025 - Personal Notes



2 THE BIVARIATE REGRESSION MODEL 13

For this to equal 8y for all values of 5y and (31, we need:

n

Z ¢i =0 (coefficient of f3p) (55)
i=1
Z cizi =1 (coefficient of 1) (56)
i=1

The variance of any such estimator is:

n

Var(B;) = o z c? (57)

=1

Using the method of Lagrange multipliers to minimize Y I ; ¢? subject to the constraints
above, we can show that the optimal choice is:

l‘i—fi‘

> (xj —7)?
This is exactly the weight that y; receives in the OLS estimator, proving that OLS is BLUE.

(58)

C; =

This means OLS has the smallest variance among all linear unbiased estimators.

2.10.5 Unbiased Estimator of Error Variance

Under the GM assumptions: E[6?] = o2
The degrees of freedom adjustment (n — 2) accounts for estimating two parameters.

2.11 The Gaussian Bivariate Regression Model

2.11.1 Sampling Distributions

Adding the normality assumption:

GMS6 - Normality: u ~ N(0,02)

Under GM1-GMG6:

~ 0‘2
pr~N (51, m) (60)

i.Q
at SSTxD (61

Bo~ N (50702
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3 INFERENCE WITHOUT NORMALITY 14

2.11.2 Hypothesis Testing and Confidence Intervals

The t-statistic for testing Hy : 51 = O:

g

where se(f3;) = e
Under Hy: t ~ t,_o

A (1 — «)100% confidence interval for S;:

Br £ty 90/ % se(B1) (63)

2.11.3 Economic vs Statistical Significance

Key Point

o Statistical significance: Ability to reject Hy at a given significance level

¢ Economic significance: Whether the magnitude is important for policy or theory

| r

Warning

Large samples can make economically small effects statistically significant. Always con-
sider both statistical and economic significance.

3 Inference Without Normality

3.1 Large Sample Approximations

For large samples, we don’t need the normality assumption. The Central Limit Theorem provides
the foundation for asymptotic inference.

3.2 Convergence in Probability and Consistency

Definition 3.1. An estimator 9n is consistent for 6 if:

plim,, .0, =0 (64)
Consistency is weaker than unbiasedness but ensures the estimator converges to the true
value as the sample size increases.

3.3 Central Limit Theorem

Theorem 3.1 (Central Limit Theorem for OLS). Under appropriate regularity conditions:

A

PP d, o 1) (65)

se(f1)

This allows us to use normal critical values instead of t-distribution for large samples.
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4 A PRIMER ON INSTRUMENTAL VARIABLES 15

3.4 Inference in the Bivariate Model
For large samples:

e Use standard normal critical values
e z-test instead of t-test

o Practically similar to t-test for n > 30

4 A Primer on Instrumental Variables

4.1 The Omitted Variable Problem

When Efu|z] # 0, OLS is biased. Common causes include:
e Omitted variables

o Measurement error

e Simultaneity

The bias in OLS when an important variable is omitted:

Cov(z1,z2)

Var(z1) (66)

E[B1] = 61 + 5o

where x9 is the omitted variable.

.

4.2 Causal Inference Without Random Assignment

Instrumental Variables (IV) provide a solution when E[u|z] # 0.
An instrument z must satisfy:

1. Relevance: Cov(z,x) # 0

2. Exogeneity: Cov(z,u) =0

4.3 The IV Estimator (Single Instrument)

The IV estimator with a single instrument:

srv . Covi(z,y) Do (zi — 2)(yi — ©)
I ST PR &)

Theorem 4.1 (IV Estimator Derivation). Intuition: Use the instrument z to extract the
exogenous variation in x.
Method of Moments Approach: From the population moment condition E[z(y — 5y —
pi1x)] = 0, we get:
E[zy] — BoE[z] — B1E[zx] =0 (68)
Elzy] — BoE[2] = 51 E[22] (69)
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5 MULTIPLE REGRESSION ANALYSIS 16

Similarly, from Ely — B9 — S1z] = 0:

Ely] — Bo — B1E[z] = 0 = fo = Ely] — 51 E|[z] (70)
Substituting:
Elzy] — (E[y] — p1E[z])E[2] = 1 E[22] (71)
Elzy] — E[Y|E[2] + 51 E[z]E[2] = 51 E[22] (72)
Cov(z,y) = 81Cov(z, x) (73)

Therefore: 1 = gg“:gz;

The sample analog gives the IV estimator:
AV _ Cov(z,y)
! Cov(z,x)
4.3.1 Two-Stage Interpretation
IV estimation can be implemented in two stages:

1. First stage: Regress x on z, obtain fitted values %

2. Second stage: Regress y on &

4.4 Statistical Inference
IV estimators generally have:

o Larger standard errors than OLS
o Asymptotic normality under regularity conditions

e Need for larger samples for reliable inference

4.5 Poor Instruments: Cautionary Note
Weak instruments (small correlation with endogenous variable) can cause:
o Bias toward OLS in finite samples
o Very large standard errors
e Poor finite-sample properties

Strong economic theory is essential for instrument validity.

5 Multiple Regression Analysis

5.1 The Model and Motivation

5.1.1 Omitted Variables Motivation

The multiple regression model allows us to control for confounding factors:

y = Po+ Brx1 + Poxa + - - + Prap +u (75)
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Each coefficient 3; represents the partial effect of z; on y, holding all other variables constant
(ceteris paribus).

B; = OE[y|z1,...,TH
=

Ox;

5.2 Obtaining OLS Estimators

In matrix notation:

y=XB+u (76)

The OLS estimator is:

B=(X'X)"'Xy (77)

The first-order conditions require:
X'a=0 (78)

This means residuals are orthogonal to all regressors.

5.3 Goodness-of-Fit

The same ANOVA decomposition applies:

o ESS_ | RSS

~TSS T T TSS (79)

_RSS/(n—k-1)

R?=1

TSS/(n — 1) (80)

Adjusted R-squared penalizes additional regressors and can decrease when adding irrelevant
variables.

5.4 “Partialling-Out” Interpretation

Theorem 5.1 (Frisch-Waugh-Lovell Theorem). The coefficient Bl from the full regression equals
the coefficient from regressing ¢ on %1, where § and &1 are residuals from regressions on the
other variables.

This provides intuition: multiple regression isolates the variation in y and z; that is uncor-
related with other regressors.

Econometrics 2025 - Personal Notes



6 INFERENCE 18

5.5 Gauss-Markov Assumptions (Multiple Regression)

Assumption

MLR.1: Linear in parameters

Assumption

| r

MLR.2: Random sampling

| r

Assumption

MLR.3: No perfect collinearity

| V

Assumption

MLR.4: Zero conditional mean: E[u|xy,..., 2] =0

Assumption

| r

MLR.5: Homoskedasticity: Var(u|zy,...,z;) = o2

\.

5.6 Sampling Properties

N

Under MLR.1-MLR.4: E[3] = B (unbiasedness)
Under MLR.1-MLR.5: Var(8) = o?(X'X) !

5.7 Omitted Variable Bias

Including relevant control variables can eliminate omitted variable bias if the mean inde-
pendence assumption E[u|zy,...,zg] = 0 holds.

5.8 Prediction

Point predictions: gy = a}/3
Prediction intervals must account for:

o Uncertainty in B

e Future error term

6 Inference

6.1 t-statistics and z-statistics

For individual coefficients:

t= M (81)
se(3;)

Use t-distribution for small samples with normality, standard normal for large samples.
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6.2 Joint Hypothesis Testing

Cannot use individual t-tests for joint hypotheses due to multiple testing problems.

6.3 F-statistic

For testing ¢ linear restrictions:

(SSRT - SSRUT)/q

F= 82
SSRur/(n —k —1) (82)
where subscripts r and ur denote restricted and unrestricted models.
Under Hy: F'~ Fy g1
6.4 Overall Significance Test
Testing Ho : 1 = B2 = -+ = B = O:
R?/k
F= 83
(1-R%)/(n—k—1) (83)
7 Topics in Multiple Regression
7.1 Qualitative Information
7.1.1 Dummy Variables
Binary variables D € {0, 1} are intercept shifters:
y=Po+ Pz + P2D+u (84)

B2 measures the difference in intercepts between the two groups.

7.1.2 Categorical Variables

For m categories, use m — 1 dummy variables to avoid the dummy variable trap (perfect
collinearity).

7.1.3 Interactions

Interaction between dummy and continuous variable:
y = o+ prr + B2D + B3(D x z) +u (85)

B3 measures the difference in slopes between groups.
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7.2 Linear Probability Model

For binary dependent variable y € {0,1}:
Pr(y = 1|z) = fo + Srz1 + -+ + Brwi (86)
Advantages:
« Simple interpretation: 8; = change in probability
e Good approximation for probabilities not too close to 0 or 1
Disadvantages:
+ Predicted probabilities can be outside [0, 1]

o Inherent heteroskedasticity

7.3 Two-Stage Least Squares

When one regressor is endogenous in multiple regression:
First stage: Regress endogenous variable on instruments and exogenous variables Second
stage: Regress y on fitted values and exogenous variables

8 Heteroskedasticity

8.1 Consequences

When Var(u|z) # 0%
o OLS remains unbiased under MLR.1-MLR.4
« OLS is no longer efficient (not BLUE)

o Standard errors are incorrect = invalid inference

8.2 Robust Standard Errors

Heteroskedasticity-consistent (White) standard errors:

n
Var(8) = (X'X)"! (Z um> (X'X)"! (87)
=1
# R implementation
library (sandwich)
coeftest (model, vcov = vcovHC)
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8.3 Testing for Heteroskedasticity

Null hypothesis: Hy : Var(u;|z;) = 0 (homoskedasticity)
Alternative: Var(u;|z;) = o?h(xiv) where h(-) > 0
Test procedure:

1. Run OLS regression: y; = «;8 + w;, obtain residuals 4,

~2 1 no a2
2. Compute 6 = -~ > i, 1

I3
Sy

3. Run auxiliary regression: —% =1+ zly +v;

Y

4. Compute LM = nR? from auxiliary regression

5. Under Hy: LM ~ Xg where ¢ is number of variables in z;

# Breusch-Pagan test in R

library(lmtest)

bptest (model) # Default uses fitted values

bptest (model, ~ x1 + x2, data = df) # Specify variables

More general test that doesn’t assume specific functional form for heteroskedasticity.
Test procedure:

1. Run OLS: y; = &8 + u;, obtain ;

2. Run auxiliary regression: 42 = 2/~ + v;
3. Where z; includes: constants, x1;, 9, . . . ,x%i,x%i, ey LT

4. LM =nR? ~ x§

Key Point

White test variations:

e White test: Include all regressors, squares, and cross-products

« White test (fitted values): 42 = vy + 719; + V207 + v;

For specific alternative of increasing variance:

1. Order observations by suspected variable causing heteroskedasticity
2. Drop middle ¢ observations, split into two groups of size n; and ng
3. Run separate regressions, compute SSR; and SSRs

4. Test statistic: GQ = % ~ Frp—kni—k
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8.4 Weighted Least Squares
When the form of heteroskedasticity is known:
Var(ui|z;) = o?h(x;) (88)
Weight observations by w; = 1/1/h(x;) to achieve efficiency.
9 Binary Dependent Variables
9.1 Latent Variable Model
Yl =x.8 + u; (89)
1 ity >0
Yi = - (90)
0 ify’ <0
9.2 Probit and Logit Models
Probit: Pr(y = 1|x) = ®(x’'B) where ® is the standard normal CDF
Logit: Pr(y = 1|z) = %
9.3 Maximum Likelihood Estimation
For a sample of n observations, the likelihood function is:
L(B) = [I[Pr(yi = Lfa:)] [1 — Pr(y; = La;)]' ™ (91)
i=1
For Probit: .
L(B) = [[[@(@B)" 1 — &(x;B)]" ™ (92)
i=1
For Logit:
n i 1 Yi
exp(x;B) " 1
L = ! 93
(8) z:l_[l 1+ exp(x;8) 1+ exp(x;B) (93)
The log-likelihood is easier to work with:
UB) = lyim[Pr(y; = L|z)] + (1 — y;) In[1 — Pr(y; = 1]z)]] (94)
i=1
For Logit (particularly simple):
UB) = [yiwiB — n(1 + exp(z;B))] (95)

i=1
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The ML estimator B M, maximizes the log-likelihood:

BML = arg mgx (B) (96)
First-order conditions:
ov L
P48 =5l — Pr(yi = i) =0 (o7)
B i=1

Since these are nonlinear, numerical methods (Newton-Raphson) are required.

Under regularity conditions:

1. Consistency: BML 5B

2. Asymptotic Normality: /n(Baz — B) 4 N(0,T71)

3. Asymptotic Efficiency: ML estimators achieve the Cramér-Rao lower bound

where 7 is the Fisher Information Matrix.

The Fisher Information Matrix is:

9*4(B)
I(B) =-E 98
In practice, we use the sample information matrix:
. _ _2B)
I =— 99
The asymptotic variance-covariance matrix is:
Var(Bap) =2 (100)
9.4 Hypothesis Testing in Binary Choice Models
For testing Hy : RB = r where R is ¢ x k:
W =(RB—7)[RI'R|" (RB—7) ~ x; (101)
5\ 2
For single coefficient: W = <€;)> ~x?
se j
For nested models:
LR = 2[0(Bur) — £(B))] ~ X (102)

where ¢ is the number of restrictions.
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Based on the score function evaluated at the restricted estimator:

I [c’%(ﬂ%)] = [ae(ﬁr)] 2 (103)

op " op e

Key Point

All three tests (Wald, LR, Score) are asymptotically equivalent but may differ in finite
samples:

o Wald: Uses unrestricted estimates only
e LR: Uses both restricted and unrestricted estimates

o Score: Uses restricted estimates only

9.5 Partial Effects

Marginal effects: w
J

Probit: 3;¢(x'B) where ¢ is the standard normal PDF
Logit: 5;A(x'B)(1 — A(x'B))

0Pr(y=1 i
. APE: 1y, 2Pyl

. PEA: 9Pr(w=1z)
: oz

# Probit model in R

probit_model <- glm(y ~ x1 + x2, family = binomial(link = "probit"))
# Logit model in R
logit_model <- glm(y ~ x1 + x2, family = binomial(link = "logit"))

10 Time Series Regression

10.1 Time Series Context

Data: {(z¢,y):t=1,...,T}
Key difference from cross-section: temporal dependence

10.2 Common Time Series Models
e Static models: y; = By + S17¢ + ue
o Distributed lag models: Include past values of x

e Autoregressive models: Include past values of y
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10.3 Models with Lagged Regressors

Autoregressive Distributed Lag (ADL) model:
Yt = @+ Poxt + f1xe—1 + Yyr—1 + we (104)

e Short-run multiplier: 5

e Long-run multiplier: *6‘1)%51

10.4 Trending Variables

Spurious regression: When both x; and y; have trends, regression may show significant
relationship even when none exists.

10.5 Stationarity and Weak Dependence
Definition 10.1. A time series is covariance stationary if:
1. E[z;] = pu (constant mean)

2. Var(z;) = 02 (constant variance)

3. Cov(x¢, x—p) depends only on h, not ¢

Weak dependence: Correlations die out as lag length increases.

10.6 Serial Correlation

10.6.1 AR(1) Errors

Uy = pus—1 + € (105)
 |p| < 1: Stationary
e p = 1: Unit root (non-stationary)
10.6.2 MA(1) Errors

u = e; + Oey_q (106)

Always stationary for finite 6.

10.7 OLS with Serial Correlation
Consequences:

e OLS still unbiased under appropriate assumptions
o Standard errors are incorrect

o Less efficient than GLS

Solution: Use HAC (Heteroskedasticity and Autocorrelation Consistent) standard errors.
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10.8 Testing for Serial Correlation

Yooty — fy1)?

DW = - (107)
Zle a7
Limitations: Only tests AR(1), cannot include lagged dependent variables.
More general LM test that:
e Can test higher-order autocorrelation
o Allows lagged dependent variables
o More flexible than DW test
11 Panel Data Models
11.1 Panel Data Structure
Data: {(zit,yix) :i=1,...,N,t=1,...,T}
o Balanced panel: All units observed all periods
o Unbalanced panel: Missing observations
11.2 Unobserved Effects Model
Yit = Po + Przit + a; + ui (108)
where qa; is time-invariant unobserved heterogeneity.
11.3 First-Differences Estimator
Taking first differences eliminates a;:
Ayt = b1Azy + Auj (109)
Key assumption: Strict exogeneity: E[u;s|x;] = 0 for all s, ¢
11.4 Fixed Effects Estimator
Within transformation (time-demeaning):
Uit = Yie — Yi = B1(wir — i) + (ug — ;) (110)

Properties:
e Eliminates a; like first differences
e More efficient when T > 2
o Cannot estimate time-invariant effects

o Consistent under strict exogeneity
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11.5 Random Effects Model

Same basic model: y;; = @}, 8 + a; + us
Key assumption: a; is uncorrelated with x;; for all ¢, ¢.
Composite error: vy = a; + uj
The model becomes: y;; = @}, 3 + vit

Var(vi¢) = 02 4 02 (111)
Cov(vit, vis) = 02 fort #s (112)
o2
_ a _
Corr(vg, vis) = o p (113)
The efficient estimator is GLS, which gives:
Bre = Bre + MBse — Bre) (114)
where:
. ﬁ rE is the fixed effects estimator
. B BE 1s the between estimator
o2 1/2
s A== (UE+TUZ)
11.6 Between Estimator
Uses only between-individual variation:
Yi = @B + ai + u; (115)

The between estimator is OLS on the time-averaged data.

11.7 Hausman Test

Purpose: Test whether random effects assumption is valid.
Null hypothesis: Hj : E[a;|z;] = 0 (random effects is consistent)
Alternative: H; : E[a;|x;] # 0 (only fixed effects is consistent)
Test statistic:

H = (Brp — Bre) [Var(Brr) — Var(Bre) " (Brr — Brr) (116)
Under Ho: H ~ x3 where k is the number of time-varying regressors.
Decision rule:

o If H > X%,a: Reject Hy, use fixed effects

e It H < X%@: Fail to reject Hp, random effects is preferred (more efficient)
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11.8 TUnbalanced Panels
When T; varies across individuals:

o Fixed effects: Still consistent, just use available observations
o Random effects: Need to modify GLS weights

e Sample selection: Be careful about non-random attrition
Missing data patterns:

o MCAR: Missing Completely at Random

« MAR: Missing at Random (conditional on observables)

« MNAR: Missing Not at Random (depends on unobservables)

# Fixed effects in R

library (plm)

fe_model <- plm(y ~ x1 + x2, data = panel_data, model = "within")
# First differences in R

fd_model <- plm(y ~ x1 + x2, data = panel_data, model = "fd")

12 Key Formulas and Concepts

12.1 Important Relationships

B =1l = %S{ (117)
F-statistic = AR/ n—k=1) (118)

. 2_,_ (1=R)H(n-1)
Adjusted R* =1 o (119)

12.2 Critical Assumptions

1. Zero conditional mean: E[u|z] =0
2. Homoskedasticity: Var(u|r) = o?
3. No perfect collinearity

4. Random sampling

12.3 When Assumptions Fail

+ Endogeneity = Use IV/2SLS

o Heteroskedasticity = Use robust standard errors or WLS
e Serial correlation = Use HAC standard errors or FGLS

o Non-linearity = Transform variables or use non-linear models
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13 R Commands Reference

13.1 Basic Regression

© 0w N s W N =

e e i
B W N = O

# Simple regression
modell <- 1lm(y ~ x, data = df)

# Multiple regression
model2 <- 1m(y ~ x1 + x2 + x3, data = df)

# With interactions
model3 <- 1m(y ~ x1*x2, data = df)

# Polynomial terms
modeld <- 1m(y ~ x + I(x~2), data = df)

# Log transformations
model5 <- 1m(log(y) ~ log(x), data = df)

13.2 Robust Standard Errors

W N O O ke W N

library (sandwich)
library(lmtest)

# Heteroskedasticity-consistent standard errors
coeftest (model, vcov = vcovHC)

# HAC standard errors (for time series)
coeftest (model, vcov = vcovHAC)

13.3 Instrumental Variables

W N

N O o

library (AER)

# Two-stage least squares
iv_model <- ivreg(y ~ x1 + x2 | zl + 22 + x2, data = df)

# First stage diagnostics
summary (iv_model, diagnostics = TRUE)

13.4 Binary Choice Models

-

© 0 N O U kR W N

# Probit model
probit_model <- glm(y ~ x1 + x2, family = binomial(link = "probit"))

# Logit model
logit_model <- glm(y ~ x1 + x2, family = binomial(link = "logit"))

# Marginal effects
library (margins)
margins (probit_model)
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13.5 Panel Data

# Durbin-Watson test
library(lmtest)
dwtest (model)

# Breusch-Godfrey test
bgtest (model)

library (plm)
# Convert to panel data format
panel _data <- pdata.frame(df, index = c("id", "time"))
# Fixed effects
fe_model <- plm(y ~ x1 + x2, data = panel_data, model = "within")
# Random effects
re_model <- plm(y ~ x1 + x2, data = panel_data, model = "random")
# First differences
fd_model <- plm(y ~ x1 + x2, data = panel_data, model = "fd")
# Hausman test
;| phtest (fe_model, re_model)
13.6 Time Series
# Time series regression with trends
ts_model <- 1lm(y ~ x + time, data = ts_data)
# Lagged variables
library (dplyr)
ts_data <- ts_data %>%
mutate (x_lagl = lag(x, 1),
y_lagl = lag(y, 1))
# ADL model
adl_model <- 1Im(y ~ x + x_lagl + y_lagl, data = ts_data)

14 Study Tips

1. Focus on assumptions: Understanding when methods work is crucial

2. Practice interpretation: Always think about the economic meaning of coefficients

-~ W

ot

Master causality: Distinguish between correlation and causation
Learn R implementation: Practice with real data

Work through examples: Apply concepts to empirical problems

6. Understand limitations: Know when methods fail and what alternatives exist

7. Connect theory to practice: Link mathematical results to economic intuition

8. Practice problem solving: Work through textbook exercises systematically
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Remember: The goal of econometrics is not just statistical modeling, but answering
economic questions with data. Always keep the economic story in mind.
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