Integration
Disclaimer: These are my personal notes compiled for my own reference and learning. They may contain errors, incomplete information, or personal interpretations. While I strive for accuracy, these notes are not peer-reviewed and should not be considered authoritative sources. Please consult official textbooks, research papers, or other reliable sources for academic or professional purposes.
1. Definition of Integral
The definite integral of $f(x)$ from $a$ to $b$ is:
where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.
2. Fundamental Theorem of Calculus
Part 1: If $F(x) = \int_a^x f(t) \, dt$, then $F'(x) = f(x)$.
Part 2: If $F'(x) = f(x)$, then:
3. Basic Integration Rules
- Power Rule: $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$)
- Constant Rule: $\int c \, dx = cx + C$
- Constant Multiple: $\int cf(x) \, dx = c\int f(x) \, dx$
- Sum Rule: $\int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx$
4. Common Integrals
- Exponential: $\int e^x \, dx = e^x + C$
- Natural Log: $\int \frac{1}{x} \, dx = \ln|x| + C$
- Trigonometric:
- $\int \sin(x) \, dx = -\cos(x) + C$
- $\int \cos(x) \, dx = \sin(x) + C$
- $\int \sec^2(x) \, dx = \tan(x) + C$
- Inverse Trig:
- $\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x) + C$
- $\int \frac{1}{1+x^2} \, dx = \arctan(x) + C$
5. Integration Techniques
5.1 Substitution
Let $u = g(x)$, then $du = g'(x) \, dx$:
5.2 Integration by Parts
For functions $u(x)$ and $v(x)$:
5.3 Partial Fractions
For rational functions, decompose into simpler fractions:
5.4 Trigonometric Substitution
For integrals involving $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, or $\sqrt{x^2 - a^2}$:
- $\sqrt{a^2 - x^2}$: Let $x = a\sin(\theta)$
- $\sqrt{a^2 + x^2}$: Let $x = a\tan(\theta)$
- $\sqrt{x^2 - a^2}$: Let $x = a\sec(\theta)$
6. Applications
6.1 Area Between Curves
The area between $f(x)$ and $g(x)$ from $a$ to $b$ is:
6.2 Volume of Revolution
For rotation around the $x$-axis:
6.3 Arc Length
The length of the curve $y = f(x)$ from $a$ to $b$ is:
7. Improper Integrals
For integrals with infinite limits or unbounded functions:
The integral converges if the limit exists, diverges otherwise.
8. Numerical Integration
8.1 Trapezoidal Rule
8.2 Simpson's Rule
9. Code Example
# Python code for integration
import sympy as sp
import numpy as np
from scipy import integrate
# Symbolic integration
x = sp.Symbol('x')
f = x**2 + 2*x + 1
integral = sp.integrate(f, x)
print(f"∫({f}) dx = {integral}")
# Definite integral
definite_integral = sp.integrate(f, (x, 0, 1))
print(f"∫₀¹({f}) dx = {definite_integral}")
# Numerical integration
def func(x):
return x**2 + 2*x + 1
result, error = integrate.quad(func, 0, 1)
print(f"Numerical result: {result}")
10. References
- Stewart, J. (2015). Calculus: Early Transcendentals.
- Apostol, T. M. (1967). Calculus, Volume 1.
- Spivak, M. (2008). Calculus.